(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair(result(y), neededIterations(i))
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair(result(x), neededIterations(i))
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair(result(x), neededIterations(i))
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
pair/0
pair/1
result/0
neededIterations/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

gcd(x, y) → gcd2(x, y, 0)
gcd2(x, y, i) → if1(le(x, 0), le(y, 0), le(x, y), le(y, x), x, y, inc(i))
if1(true, b1, b2, b3, x, y, i) → pair
if1(false, b1, b2, b3, x, y, i) → if2(b1, b2, b3, x, y, i)
if2(true, b2, b3, x, y, i) → pair
if2(false, b2, b3, x, y, i) → if3(b2, b3, x, y, i)
if3(false, b3, x, y, i) → gcd2(minus(x, y), y, i)
if3(true, b3, x, y, i) → if4(b3, x, y, i)
if4(false, x, y, i) → gcd2(x, minus(y, x), i)
if4(true, x, y, i) → pair
inc(0) → 0
inc(s(i)) → s(inc(i))
le(s(x), 0) → false
le(0, y) → true
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
ab
ac

S is empty.
Rewrite Strategy: FULL

(5) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
inc(s(i)) →+ s(inc(i))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [i / s(i)].
The result substitution is [ ].

(6) BOUNDS(n^1, INF)